Fuzzy-Logic Based Navigation of Underwater Vehicles

نویسندگان

  • V. Kanakakis
  • Kimon P. Valavanis
  • Nikos Tsourveloudis
چکیده

A fuzzy logic based general purpose modular control architecture is presented for underwater vehicle autonomous navigation, control and collision avoidance. Three levels of fuzzy controllers comprising the sensor fusion module, the collision avoidance module and the motion control module are derived and implemented. No assumption is made on the specific underwater vehicle type, on the amount of a priori knowledge of the 3-D undersea environment or on static and dynamic obstacle size and velocity. The derived controllers account for vehicle position accuracy and vertical stability in the presence of ocean currents and constraints imposed by the roll motion. The main advantage of the proposed navigation control architecture is its simplicity, modularity, expandability and applicability to any type of autonomous or semi-autonomous underwater vehicles. Extensive simulation studies are performed on the NPS Phoenix vehicle whose dynamics have been modified to account for roll stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar Grid Navigation Algorithm for Unmanned Underwater Vehicles

To solve the unavailability of a traditional strapdown inertial navigation system (SINS) for unmanned underwater vehicles (UUVs) in the polar region, a polar grid navigation algorithm for UUVs is proposed in this paper. Precise navigation is the basis for UUVs to complete missions. The rapid convergence of Earth meridians and the serious polar environment make it difficult to establish the true...

متن کامل

Navigation of Autonomous Robotic Vehicles Using Fuzzy Logic

A general fuzzy logic control framework along with its application specific modifications is presented to support, evaluate and justify the proposed perspective to unmanned vehicle autonomous navigation. The paper discusses successful applications of collision free motion control of ground, aerial and underwater unmanned vehicles navigation. The common characteristic in all applications regardl...

متن کامل

Supervisory Fuzzy Learning Control for Underwater Target Tracking

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pip...

متن کامل

Collision Avoidance of Moving Obstacles for Underwater Robots

A fuzzy logic for autonomous navigation of underwater robot is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robot, is modified for application to the autonomous navigation of underwater robot. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy logic can be used in either track keeping or obstacle avoidance. Fuzzy logi...

متن کامل

Optimization of an Intelligent Controller for an Unmanned Underwater Vehicle

Underwater environment poses a difficult challenge for autonomous underwater navigation. A standard problem of underwater vehicles is to maintain it position at a certain depth in order to perform desired operations. An effective controller is required for this purpose and hence the design of a depth controller for an unmanned underwater vehicle is described in this paper. The control algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2004